RECYCLING - A LABORATORY STUDY

by

J. Keith Davidson
Principal Asphalt Engineer
John Emery Geotechnical Engineering Limited
Downsview, Ontario, Canada

Johanna Ernyes Laboratory Supervisor McAsphalt Engineering Services Toronto, Ontario, Canada

Acknowledgements

The authors are indebted to Mr. John Carrick of McAsphalt Industries Limited for the time and facilities required for the preparation of this paper.

ABSTRACT

With the current trend towards preserving the environment and the country's natural resources the asphalt industry as a whole has committed itself to the use of recycling.

This paper contains data from a laboratory study done by McAsphalt Engineering Services on laboratory prepared recycled hot mix designs with the major emphasis on the asphalt cements used. HL 4 mixes conforming to Ontario's OPSS Form 1150 were designed using two different recycling materials combined in nine different recycling percentages with six different grades of asphalt cement. The extracted asphalt cement was recovered by Abson recovery and the basic asphalt cement testing was performed on each sample. The two different recycling materials had recovered penetration values of 22 and 37.

The study examines the effects of asphalt cement grade (85/100, 120/150, 150/200, 200/300, 300/400 and 500+) in combination with the different percentages of recycled material (15% to 50%). Blends of the recovered asphalt from the recycle materials and the six virgin asphalt cements were made and the standard asphalt tests done on each blend.

SOMMAIRE

Dans le cadre de la tendance actuelle à vouloir préserver l'environnement et les ressources naturelles du pays, l'industrie de l'asphalte dans son ensemble s'est engagée à utiliser le recyclage.

Ce document contient des données provenant d'une étude en laboratoire effectuée par McAsphalt Engineering Services. Cette étude porte sur des mélanges à chaud d'asphalte recyclé préparés en laboratoire et met l'accent principalement sur les ciments d'asphalte utilisés dans ces mélanges. Les mélanges HL 4, conformément au formulaire OPSS 1150 de L'Ontario, ont été conçus à l'aide de deux matériaux de recyclage différents, combinés, selon 9 différents pourcentages de recyclage, avec 6 ciments d'asphalte de degrés de pénétration différents. Le ciment d'asphalte extrait a été récupéré au moyen de la technique de récupération Abson et le test de base pour le ciment d'asphalte a été effectué pour chaque échantillon. Les deux matériaux différents de recyclage ont retrouvé les valeurs de pénétration de 22 et de 37.

L'étude analyse les effets de la combinaison de ciments d'asphalte possédant un degré de pénétration de 85/100, 120/150, 150/200, 200/300, 300/400 ou 500 et plus avec des matériaux de recyclage de différents pourcentages (15 à 50%). L'asphalte récupéré à partir de matériaux de recyclage a été mélangé aux six ciments d'asphalte vierges, et chaque échantillon a été soumis à des tests standard afin de vérifier le degré de pénétration de l'asphalte.

INTRODUCTION

With the improved technology in processing recycled materials and state of the art hot mix plants the quality of recycled hot mix has been greatly improved since the early days of the recycling business. As well, improved mix design methods for recycled pavements have resulted in better quality recycled hot mixes. The proper application of good pavement mixture design using the proper aggregates and asphalt cement can greatly improve the quality of paving mixes and increase the service life of paved roads made from recycled materials.

Hot mix recycling is extremely popular throughout Canada and the rest of the world as evidenced by the number of papers and reports which have been published on the subject (1-7). All the reports talk of good mix design practice and recycled binder quality to achieve a successful pavement.

As part of this trend in recycling technology McAsphalt Engineering Services initiated a research study into the factors affecting the design of recycled hot mixes. The major concern in the past has been to redesign the hot mix using a softer grade or the same grade of asphalt cement and return the old pavement to its original consistency. The main thrust of this study was to determine the effect different grades of asphalt cement (85/100 to 500+) would have on the finished properties of the recycled mix. The study was designed to provide information which would allow an engineer to determine with a satisfactory degree of confidence when a certain grade of asphalt cement should be used and the level of recycled material which could be used with that asphalt cement to meet user agency specifications.

MIX DESIGNS

The Marshall method of design was used to obtain the laboratory data on the mixes. An HL 4 type mix conforming to Ontario's OPSS Form 1150 was selected as the basis for the designs. The following design criteria was used:

Traffic Volume	_	5000d
	>	5000 vpd
Marshall Stability		8900 N min.
Air Voids %		3 - 5
VMA %		14.5 min
Mixing Temperature		150 C
Compaction Temperature		140 C

The coarse and fine aggregates used in the study are aggregates which McAsphalt has used for many years for various research projects because of their consistent physical properties. In order to meet the design criteria using the high recycle percentage (50%), the sand aggregate was screened on the 1.18 mm sieve to create a fine blending sand. The data on the virgin aggregates as well as the two recycle materials (RAP and Millings) used in the study are shown in Table 1. The terms RAP (Recycled Asphalt Pavement) and Millings have been used to differentiate between the two recycle materials used in the research project. The RAP material has been processed

through a crusher, whereas the Millings is the material that has been produced by a milling machine.

Mix designs were obtained on the eight different recycle percentages (15 to 50%) for each of the two recycle materials. A control mix containing only virgin materials was also designed using the same virgin aggregates as used in the recycle mixes. In order to simplify the design process all the designs were based on the use of 85/100 virgin asphalt. Once the nine designs were done, the six different grades of asphalt cement were substituted and the designs redone. The physical data on the six grades of asphalt cement used as well as the test data on the two recycled asphalt cements are as shown in Table 2. In order to eliminate variables and to simplify the design procedure, the same mixing (150°C) and compaction (140°C) temperatures were used on all mixes regardless of the percentage recycle, type of recycle material or grade of asphalt cement used. Tables 3 and 4 contain the gradation data on the various recycle designs done using both the RAP and the Millings.

After the Marshall tests were performed on the mixes the asphalt cements were recovered from the briquettes by the Abson recovery method (ASTM D1856). The penetration at $25\,^{\circ}\text{C}$, the kinematic viscosity at $135\,^{\circ}\text{C}$ and the PVN were measured for each recovered asphalt cement.

ASPHALT BLENDING STUDY

In conjunction with the mix design work involving the various grades of asphalt cement and recycling percentages, a blending study was done to produce asphalt cement blends, which incorporated the various grades of virgin asphalt cement with the asphalt recovered from the two recycling materials (RAP and Millings).

A large volume of recovered binder was required for the blending study. In order to extract sufficient recovered binder, large supplies of recycle materials were obtained from the stockpiles at two different Ontario contractors.

These materials were representative of the stockpiles and were the same recycle materials which were used in the mix design portion of the research study. In order to achieve a large enough amount of recovered binder, an extraction procedure similar to the method that Robertson and Adams (1) described in their 1988 CTAA paper was used. The procedure used for the study involved the following steps:

- A sufficient amount of recycle material (20 kg) was placed in a suitable container, covered with trichloroethylene and stirred to ensure thorough mixing. The material was left covered for a number of days with occasional stirring each day.
- The extract solution was decanted and collected. The solution was centrifuged using an SMM centrifuge to remove the fines. The standard Abson recovery test (ASTM 1856) was run and the recovered binder was collected in fractions.

3. The penetration at 25°C, the kinematic viscosity at 135°C and the PVN value were obtained on each fraction and compared to the other fractions.

After an adequate amount of recovered binder was collected, the blending study was started. In the case of the Millings, sufficient recovered binder was obtained for the complete blending study. The use of a higher penetration recycle material (37 Pen) was added to the research project after a large proportion of the project had been completed. The RAP material was in limited supply and the quantity of recovered binder was not sufficient to complete the entire asphalt blending study. To maximize the data obtained from the blending study, the pertinent blending percentages were used with each grade of virgin asphalt cement.

The asphalt cement blending study involved the blending of the six virgin asphalt cements with various percentages (15 to 50%) of the recovered asphalt from the two recycled materials. The blends using the Millings material were then tested for the following:

Penetration at 25°, 10° and 4°C Kinematic Viscosity at 135°C Absolute Viscosity at 60°C Softening Point PVN

Due to the limited supply of the higher penetration RAP material the asphalt blends for this study were tested for only the following:

Penetration at 25°C Kinematic Viscosity at 135°C PVN

Thin Film Oven Tests were carried out as well on the blended samples and the above tests were repeated on the residues.

DISCUSSION OF THE MIX DATA

The Marshall briquettes produced for each recycle mix blend were extracted to obtain the asphalt content and the asphalt cement for testing. All the samples were recovered by the standard Abson recovery method (ASTM D1856).

In order to determine the percentage of recycle asphalt cement present in each mix the recovered asphalt content was assumed to be the true asphalt content in the mix (i.e. 100% recovery). Since the percentage of virgin asphalt cement added to each mix is known, the percentage of recycle asphalt in the mix is equal to the difference between the total percentage of asphalt cement in the mix and the percentage of virgin asphalt added to the mix. Once the percentage of recycle asphalt cement is determined, graphs of the recovered penetration versus the percentage of recycle asphalt cement can be plotted. Figures 1 through 6 show the plots for the various virgin asphalt cements and the two recycle materials.

The test data shown in Figures 1 through 6 illustrate the impact that the penetration of the recycle material can have

on the final penetration of the mix. Depending on the penetration of the recycle material the quantity of recycle material which can be incorporated into the mix can be varied significantly. This effect has the greatest influence when the harder grades of virgin asphalt cement are used (Figures 1 and 2). An interesting observation of this study is that soft grades of virgin asphalt cement (500+, Figure 6) appears to negate the influence that the penetration of the recycle material has on the final penetration results of the mix.

Based on the test data generated in the laboratory study, the use of 85/100 penetration grade asphalt cement as a virgin asphalt cement for recycling should be monitored very closely. The likelihood of a hot mix which has a low percentage of recycle material (20% or 25%) having a marginal recovered penetration during actual construction is high.

With the looming implementation of end result specifications (ERS), contractors, should use the next grade higher than 85/100 for all low recycle percentage mixes.

DISCUSSION OF THE ASPHALT CEMENT BLENDING

As mentioned earlier, a blending study was done to produce asphalt cement blends which incorporated the various grades of virgin asphalt cement with the asphalt cement recovered from the two recycling materials.

The initial research project involved the use of the six different grades of virgin asphalt cement and one recycle material (Millings, Pen = 22). As a result the volume of test data collected on this recycle material is quite substantial (Tables 5 - 10), whereas the results obtained on the second recycle material (RAP, Pen = 37) are limited in volume due to the lack of available RAP material. Tables 11 through 16 contain the test data on the higher penetration recycle material. Although there is less data on the second recycle material, similar trends in test results have been observed for both recycle materials.

Figures 7 through 18 present the test data from the tables in graph form. The plots show that the penetration values obtained on the recovered asphalt cement lie between the penetration values of the virgin blends and the penetration results of the thin film oven test (TFOT) on those virgin asphalt blends for the same percentage of recycle asphalt cement. The penetration numbers from the TFOT were the lowest penetration values observed in all cases.

When designing a recycle mix, blends of the recovered asphalt from the recycle material and softer grades of virgin asphalt cement, which might be used, should be made. The Thin Film Oven Test should be run on these blends and based on the TFOT test results, the proper grade or penetration of virgin asphalt cement can be determined. By using the results from the TFOT the likelihood of low penetration results occurring in production would be negligible.

The quantity of recycle which can be used in a new mix can be influenced not only by the penetration, but by the percentage of asphalt cement present in the recycle material as well. The ratio of virgin asphalt to the recycle asphalt

can aid in the determination of the grade of virgin asphalt cement necessary to meet the specified requirements.

FUTURE RESEARCH

As part of the continuing research at McAsphalt Engineering Services on recycling technology a number of factors which have not been answered by the present study should be examined. These are as follows:

- The use of modified asphalt cements in recycling should be investigated.
- 2. The use of rejuvenating oils in conjunction with asphalt cements should be examined.
- The development of a design method to simulate the aging process that occurs in the field is required.

CONCLUSIONS

- When 85/100 Penetration grade asphalt cement is used for recycling, the penetration of the recycle material should be monitored closely. The penetration of the recycle material should dictate the virgin grade used.
- The use of the Thin Film Oven Test as a design criteria for final penetration should be considered in the determination of the percentage of recycle material in the mix and the penetration grade of virgin asphalt cement to be used.
- 3. The grade of virgin asphalt cement used should also be based on the final penetration desired as well as the ratio of percent recycle asphalt to virgin asphalt cement.
- 4. The effect of the penetration of the recycle material disappears as the penetration of the virgin asphalt used increases. Above a penetration of approximately 400 the recycle material penetration has no influence on the penetration of the final blend.
- 5. With the implementation of end result specifications (ERS) all parties involved in the design and production of recycled hot mix will have to become keenly aware of the pitfalls of recycle mixes.

REFERENCES

- Robertson, W.D. and Adams, B.B., "Mix Design The Key to Successful Pavement Recycling", Proceedings, Canadian Technical Asphalt Association, Vol 33, p.330, 1988.
- Stamatinos, G., "A Procedure for the Design of the Bitumen in Hot Recycled Asphalt Concrete", Proceedings, Canadian Technical Asphalt Association, Vol 33, p.178, 1988.
- 3. Earl, J.F. and Emery, J.J., "Practical Experience with High Ratio Hot Mix Recycling", Proceedings, Canadian Technical Asphalt Association, Vol 32, p.326, 1987.
- Fleming, H.B., "Hot Mix Recycling of Asphaltic Concrete Pavements in the Province of New Brunswick", Proceedings, Canadian Technical Asphalt Association, Vol 32, p.204, 1987.
- 5. McLuckie, R.F., Korgemaki, P. and Villneff, H.C., "Performance of High Ratio Recycled Pavements in Northern Ontario ", Proceedings, Canadian Technical Asphalt Association, Vol 32, p.42, 1987.
- McMillan, C. and Palsat D., "Alberta's Experience in Asphalt Recycling", Proceedings, Canadian Technical Asphalt Association, Vol 30, p.148, 1985.
- Davidson, J.K. and MacInnis, W.K., "A Rational Design for the Rehabilitation of Asphalt Pavements", Proceedings, Canadian Technical Asphalt Association, Vol 34, p.224, 1989.
- 8. Hadipour, K., Kazmierowski, T.J. and Cheng, S., "Designed Penetration Recycled Hot Mix", Proceedings, Canadian Technical Asphalt Association, Vol 34, p.42, 1989.

TABLE 1

DATA ON AGGREGATE SAMPLES WASHED SIEVE ANALYSIS

AGGREGATE TYPE	STONE	SAND	BLEND SAND	RAP 37 PEN	MILLINGS 22 PEN
SIEVE SIZE	% PASS	% PASS	% PASS	% PASS	% PASS
26.0 mm 19.0 mm 16.0 mm 13.2 mm 9.5 mm 4.75 mm 2.36 mm 1.18 mm 600 um 300 um 150 um 75 um	100 99.5 97.0 77.4 10.7 1.4 1.1 0.9 0.8 0.7	100 98.8 89.7 72.3 40.5 20.5 8.1 1.0	100 97.0 54.5 29.0 9.5 2.0	100 99.0 98.0 95.0 85.0 65.0 48.0 33.0 21.0 9.0 5.6	100 99.0 96.6 94.0 86.8 66.9 55.7 47.3 37.7 23.7
Bulk Specific Gravity	2.682	2.632	2.666	2.658	2.666
% Water Absorption	1.37	1.63	1.19	0.79	1.00
% Asphalt Content				4.30	4.63

TABLE 2
PROPERTIES OF ASPHALT CEMENT

		RAP MATERIALS						
TESTS	85/100	20/150	150/200	200/300	300/400	500+	22 PEN	37 PEN
Pen @ 25°C	88	123	156	275	335	537	22	37
@ 10°C	19	31	37	67	90	103	6	-
@ 4°C	10	16	18	33	41	56	2	-
Kin.Vis @ 135°C	423	325	285	207	175	121	1215	586
PVN	-0.28	-0.30	-0.22	-0.01	-0.01	0.00	-0.29	-0.70
Abs. Vis. @ 60°C	2023	1098	943	924	265	177	32559	9151
Soft.Pt. R&B °C	44.2	45.3	41.9	39.7	35.0	29.6	63.1	60.0
TFOT								
% Loss by Wt.	0.166	0.318	0.205	0.342	0.817	0.667	0.681	0.354
% Ret. Pen	62.5	61.8	59.6	57.5	49.6	57.9	77.3	83.8
Pen @ 25°C	55	76	93	158	166	311	17	31
@ 10°C	12	16	26	50	42	69	2	_
@ 4°C	6	10	14	27	20	37	0	_
Kin.Vis @ 135°C	599	505	432	304	301	167	1739	845
PVN	-0.30	-0.19	-0.19	-0.09	-0.05	-0.22	-0.21	-0.41
Abs. Vis. @ 60°C	5334	3395	2181	1052	805	396	87613	21068
Soft.Pt. R&B °C	52.2	49.4	47.8	41.7	40.0	34.8	68.6	62.2

TABLE 3

ASPHALT MIX BLENDS - 22 PEN

BLEND									
% RAP MAT % COARSE % FINE AG % BLEND A % VIRGIN % TOTAL A	AGGREGATE GREGATE GGREGATE ASPHALT	15.0 37.5 47.5 0.0 4.66 5.30	20.0 35.0 45.0 0.0 4.45 5.30	25.0 32.5 42.5 0.0 4.13 5.20	30.0 27.5 42.5 0.0 4.02 5.30	35.0 24.0 41.0 0.0 3.61 5.10	40.0 21.5 38.5 0.0 3.56 5.40	45.0 20.0 0.0 35.0 3.13 5.20	50.0 17.5 0.0 32.5 2.90 5.20
SIEVE SIZ	E								
1 INCH 3/4 INCH 5/8 INCH 1/2 INCH 3/8 INCH NO. 4 8 16 30 50 100 200	26.5 mm 19.0 mm 16.0 mm 13.2 mm 9.5 mm 4.75 mm 2.36 mm 1.18 mm 600 µm 300 µm 150 µm	100 99.9 99.3 98.0 89.5 60.8 51.1 40.6 26.5 15.3	100 99.8 99.4 97.8 89.5 61.4 51.6 41.2 27.3 15.8 7.3	100 99.8 99.0 97.5 89.4 62.0 52.2 41.8 28.1 16.4	100 99.7 98.8 97.4 89.9 64.8 54.9 44.1 29.9 17.5 8.3	100 99.7 98.7 97.2 90.0 66.3 56.3 45.4 31.1 18.3 8.7	100 99.6 98.5 97.0 89.9 66.9 56.8 46.0 31.9 9.0	100 99.6 98.4 96.7 89.5 67.2 60.3 56.5 38.9 22.9	100 99.5 98.2 96.5 89.4 67.8 60.6 56.3 39.2 23.2

TABLE 4

ASPHALT MIX BLENDS - 37 PEN

BLEND									
% RAP MAT % COARSE % FINE AG % BLEND A % VIRGIN % TOTAL A	AGGREGATE GREGATE GGREGATE ASPHALT	15.0 37.5 47.5 0.0 4.61 5.30	20.0 35.0 45.0 0.0 4.38 5.30	25.0 32.5 42.5 0.0 4.05 5.20	30.0 27.5 42.5 0.0 3.92 5.30	35.0 24.0 41.0 0.0 3.49 5.10	40.0 21.5 38.5 0.0 3.56 5.40	45.0 20.0 35.0 0.0 3.29 5.20	50.0 18.0 32.0 0.0 3.07 5.20
SIEVE SIZ	E								
1 INCH 3/4 INCH 5/8 INCH 1/2 INCH 3/8 INCH NO. 4 8 16 30 50 100 200	26.5 mm 19.0 mm 16.0 mm 13.2 mm 9.5 mm 4.75 mm 2.36 mm 1.18 mm 600 µm 300 µm 150 µm	100 99.9 99.5 98.1 89.3 60.5 50.0 38.4 24.0 13.8 6.5 2.3	100 99.8 99.4 98.0 89.1 61.0 50.1 38.3 24.0 13.9 6.7 2.5	100 99.8 99.3 97.8 88.9 61.5 50.2 38.2 23.9 14.0 6.9 2.7	100 99.7 99.3 97.7 89.3 64.3 52.6 39.8 24.9 14.6 7.3 2.9	100 99.7 99.2 97.5 89.3 65.7 53.6 40.4 25.3 14.9 7.5 3.1	100 99.6 99.1 97.4 89.1 66.2 53.7 40.2 25.2 15.0 7.7 3.3	100 99.6 99.0 97.2 88.7 65.8 53.0 39.4 24.8 14.9 7.8 3.5	100 99.6 98.9 97.0 88.4 65.9 52.7 39.0 24.5 14.8 7.9 3.7

TABLE 5

ASPHALT	В	LEN	DING
85/100	_	22	DEN

	85/1	00 - 22	PEN				
15	20	85/10 25	30	35	40	45	50
69 14 7 -0.41 2966	492 67 12 5 -0.37 3324 48.9	527 60 12 5 -0.37 3909 50.0	571 57 11 4 -0.27 4525 51.4	574 52 10 3 -0.42 5012 51.9	579 49 9 3 -0.47 6323 52.8	652 44 8 3 -0.41 6966 54.2	752 39 6 2 -0.39 9505 55.0
68.1 683 47 11 6 -0.28	0.213 71.6 626 48 10 5	0.282 71.7 753 43 8 4	0.275 71.9 737 41 7 4 -0.32	0.369 71.2 854 37 6 3	0.319 73.5 848 36 7 3	0.361 75.0 873 34 7 2	0.389 76.0 988 29 5 2
6824 54.4	6033 54.2	8535 55.6	9736 56.7	11335 57.5	12063 58.1	14600 59.4	17542 60.0
ED AC							
5.3 5.17	5.3 5.11	5.2 5.11	5.3 5.05	5.1 4.94	5.4 5.24	5.2 5.25	5.2 5.16
552 63 15 9 -0.27 4432 51.4	606 54 13 8 -0.29 5393 51.9	641 52 12 7 -0.26 5572 51.9	653 52 11 7 -0.34 6010 53.9	667 46 11 6 -0.34 6218 54.7	708 44 10 7 -0.30 7647 55.0	710 42 10 6 -0.34 8024 56.1	782 38 9 5 -0.32 8437 56.9
	ŗ	rable 6					
15	20	120/1 25	50 30	35	40	45	50
380 83 16 8 -0.46 2208 45.3	440 71 18 9 -0.46 3157 47.7	500 65 17 6 -0.38 3535 49.4	521 64 16 6 -0.33 4003 50.0	550 60 15 6 -0.33 4424 51.1	530 56 9 4 -0.45 4769 51.7	569 50 6 3 -0.47 5605 53.3	630 43 5 2 -0.48 6554 54.7
0.318 67.0 544 59 13 6	0.323 70.4 653 50 14 7	0.328 72.3 690 47 13 6	0.295 68.8 716 44 12 6	0.338 68.3 794 41 10 5	0.391 71.4 750 40 10 5	0.446 74.0 831 37 9 5	0.392 79.1 854 34 8 4
4577 51.4	6705 54.4	7710 54.7	7764 55.0	8716 55.3	8920 55.0	11222 55.8	12281 56.7
ED AC							
5.3 5.04	5.3 5.29	5.2 5.11	5.3 5.17	5.1 5.14	5.4 5.16	5.2 5.04	5.2 4.95
465	498 73 19 9 -0.25 3443 49.2	518 71 18 7 -0.23 3157 48.9	525 66 17 7 -0.29 3253 49.4	568 62 16 7 -0.25 4639 51.1	605 55 11 6 -0.28 5439 53.3	621 51 12 5 -0.33 6367 53.9	658 47 10 4 -0.33 7707 54.7
	4666 467 1416 4866 9914 4866 991.4 4866 991.4 4866 0.284.4 0.284.4 0.284.4 0.284.4 0.284.4 0.284.4 0.284.4 0.284.4 0.284.4 0.284.4 15 5.315.9 16 8.83.1 16 8.83.1 17 97.4 18 97.4	15 20 467 492 699 67 14 12 7 - 5 -0.41 -0.37 2966 332 48.6 48.9 0.259 0.213 68.1 71.6 683 626 47 48 11 10 6 5 -0.28 -0.38 54.4 54.2 ED AC 5.3 5.17 5.11 552 606 63 15 11 552 606 63 54 15 13 -0.27 -0.29 4432 5393 51.4 51.9 ASPHA 120/1 15 20 380 440 83 71 16 18 9 -0.46 -0.46 2208 3157 45.3 47.7 0.318 0.323 67.0 70.4 549 653 59 13 14 -0.36 -0.22 457.7 670.5 51.4 54.4 ED AC 5.3 5.3 5.04 529 465 498 719 -0.36 -0.22 457.4 54.4 ED AC 5.3 5.3 5.04 5.29 465 498 719 -0.36 -0.25 3008 3443	## A SPHALT BLEN For A SPHALT BLEN For A SPHALT BLEN For A STABLE 6 ## ASPHALT BLEN FOR A STA	467	15 20 25 30 35 467 492 527 571 574 69 67 60 57 52 14 12 12 11 10 7 5 5 4 2966 3324 3909 4525 5012 48.6 48.9 50.0 51.4 51.9 0.259 0.213 0.282 0.275 0.369 68.1 71.6 71.7 71.9 71.2 683 626 753 737 854 47 48 43 41 37 11 10 8 7 6 6 5 4 4 3 31 11 10 8 7 6 6 5 5 4 4 3 31 11 10 8 7 6 6 5 5 4 4 3 31 11 10 8 7 6 6 5 5 4 4 4 3 6824 6033 8535 9736 11335 54.4 54.2 55.6 56.7 57.5 ED AC 5.3 5.3 5.3 5.2 5.3 5.1 5.17 5.11 5.11 5.05 4.94 552 606 641 653 667 63 54 52 52 46 15 13 12 11 11 -9 8 7 7 6 63 54 52 52 46 15 13 12 11 11 -9 8 7 7 6 -0.27 -0.29 -0.26 -0.34 -0.34 4432 5393 5572 6010 6218 51.4 51.9 51.9 53.9 54.7 TABLE 6 ASPHALT BLENDING 120/150 - 22 PEN TABLE 6 ASPHALT BLENDING 120/150 - 22 PEN 15 20 25 30 35 380 440 500 521 550 83 3157 3535 4003 4424 45.3 47.7 49.4 50.0 51.1 0.318 0.323 0.328 0.295 0.338 67.0 70.4 72.3 68.8 68.3 544 653 690 716 794 45.3 47.7 49.4 50.0 51.1 0.318 0.323 0.328 0.295 0.338 67.0 70.4 72.3 68.8 68.3 544 653 690 716 794 45.3 47.7 49.4 50.0 51.1 0.318 0.323 0.328 0.295 0.338 67.0 70.4 72.3 68.8 68.3 544 653 690 716 794 45.7 6705 7710 7764 8716 67 7 6705 7710 7764 8716 67 7 6705 7710 7764 8716 67 7 6705 7710 7764 8716 7 6705 7710 7764 8716 7 6705 7710 7764 8716 7 6705 7710 7764 8716 7 7 6705 7710 7764 8716 7 7 6705 7710 7764 8716 7 7 6705 7710 7764 8716 7 7 6705 7710 7764 8716 7 7 6705 7710 7764 8716 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15 20 85/100 467 492 527 571 574 579 69 67 60 57 52 49 14 12 12 11 10 9 7	15 20 85/100 30 35 40 45 467 492 527 571 574 579 652 69 67 60 57 52 49 44 12 12 11 10 9 8 7 5 5 4 3 3 3 3 3 7 6 6 6 6 6 6 6 6 7 6 6 6 6 7 6 6 6 6

TABLE 7

ASPHALT BLENDING 150/200 - 22 PEN

GRADE % RECYCLE	0	15	20	150/2 25	00 30	35	40	45	50
TESTS	Ü	13	20	23	30	33	-10	,,,	30
Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft.Pt. R&B°C	285 156 37 18 -0.22 943 41.9	327 113 27 15 -0.39 1543 44.7	416 93 18 10 -0.25 2641 46.4	464 83 15 8 -0.21 3082 47.8	472 76 14 7 -0.31 3200 48.3	522 69 13 6 -0.25 3604 49.2	520 64 13 6 -0.34 3641 49.4	524 58 12 7 -0.43 4206 50.3	552 52 9 6 -0.47 5003 51.4
TFOT	0 205	0 274	0 400	0 330	0 330	0 224	0 227	0 411	0 467
% Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C	0.205 59.6 432 93 26 14 -0.19 2181 47.8	0.374 65.5 462 74 18 6 -0.35 2972 51.4	0.408 81.8 619 65 16 8 -0.07 5948 52.2	0.328 79.5 637 58 13 7 -0.16 6289 53.1	0.320 76.9 644 55 13 6 -0.20 6195 53.3	0.334 82.8 650 53 10 5 -0.23 6877 53.9	0.337 81.3 685 49 9 4 -0.24 7833 55.0	0.411 63.3 700 38 8 3 -0.46 8156 55.3	0.467 69.2 733 36 8 3 -0.45 10142 56.4
DATA ON ABSON RE	COVERE	D AC							
% AC (TARGET) % AC (EXTRACTED) Kin Vis @ 135°C Pen @ 25°C @ 4°C PVN Abs Vis @ 60°C Soft. Pt. R&B°C	6.0 5.90 327 131 29 16 -0.21 1599 43.1	5.3 5.21 377 103 21 12 -0.28 2094 45.0	5.3 5.25 411 89 19 11 -0.32 2375 46.4	5.2 5.23 474 79 14 9 -0.24 2769 47.8	5.3 5.38 506 74.5 13 7 -0.21 3080 48.3	5.1 5.07 515 69 13 6-0.27 3382 49.3	5.4 5.39 518 68 13 6-0.28 3216 49.2	5.2 5.01 525 61 14 8 -0.37 4380 50.3	5.2 4.93 564 54 12 6 -0.39 5167 51.4
			,	rable 8					
				LT BLEN 00 - 22					
GRADE % RECYCLE TESTS	0	15	20	200/3 25	30	35	40	45	50
Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C	207 275 67 33 -0.01 478 39.7	245 167 32 25 -0.38 924 37.5	285 149 25 19 -0.27 1098 38.9	314 130 23 17 -0.29 1302 40.6	303 117 26 13 -0.47 1438 43.6	379 94 21 10 -0.38 2208 45.6	418 83 17 8 -0.37 2585 46.1	440 78 15 7 -0.36 2809 47.5	488 68 14 7 -0.36 3838 48.9
TFOT									
<pre>% Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C</pre>	0.342 57.5 304 158 50 27 -0.09 1052	0.386 56.9 342 95 23 13 -0.52 1662	0.463 61.7 394 92 20 10 -0.34 2182	0.370 66.2 408 86 18 8 -0.37 2476	0.399 70.9 409 83 20 9 -0.40 2452	0.621 68.1 554 64 18 8 -0.25 4286	0.417 71.1 560 59 15 7 -0.31 4853	0.358 70.5 587 55 13 7	0.350 70.6 670 48 13 6 -0.29 7383
Soft. Pt. R&B°C	41.7	43.3	44.4	45.6	46.1	51.1	52.2	53.1	54.2
DATA ON ABSON RE			. .	F ^	F 3	F 1	- A	г 2	F 2
DATA ON ABSON RE % AC (TARGET) % AC (EXTRACTED)	6.0	5.3 5.15	5.3 5.19	5.2 4.88	5.3 5.25	5.1 5.07	5.4 5.47	5.2 5.21	5.2 5.32

TABLE 9

300/400			PEN
:	300)/40	00

GRADE % RECYCLE	0	15	20	300/4		35	40	45	50
TESTS	U	15	20	25	30	35	40	45	50
Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft.Pt. R&B°C	175 335 90 41 -0.01 265 35.0	208 209 38 22 -0.38 648 36.9	219 200 39 23 -0.34 701 38.3	252 150 31 17 -0.47 1009 39.4	282 133 28 15 -0.43 1235 40.6	310 118 25 13 -0.43 1477 42.2	351 108 25 14 -0.33 1737 44.4	377 98 22 12 -0.34 2067 45.8	414 82 17 9 -0.40 2635 47.2
TFOT									
% Loss by Wt. % Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft. Pt. R&B°C	0.817 49.6 301 166 42 20 -0.05 805 40.0	0.694 60.3 302 126 32 14 -0.39 1352 41.4	0.647 64.0 321 128 30 15 -0.27 1378 43.9	0.617 66.7 375 100 24 12 -0.32 2169 46.1	0.629 67.7 400 90 23 11 -0.34 2266 46.9	0.599 66.1 448 78 21 11 -0.34 2953 47.8	0.612 74.1 446 80 19 9 -0.31 2727 50.0	0.518 69.4 496 68 18 9 -0.34 3911 50.8	0.457 74.4 552 61 17 9 -0.30 5003 51.7
DATA ON ABSON R	ECOVERE	D AC							
% AC (TARGET) % AC (EXTRACTED	6.0) 5.76	5.3 5.18	5.3 5.34	5.2 5.05	5.3 5.18	5.1 5.10	5.4 5.40	5.2 5.22	5.2 5.25
Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft. Pt. R&B°C	206 266 54 29 -0.05 523 35.6	246 188 38 20 -0.21 685 38.6	259 169 34 17 -0.29 911 40.3	270 150 30 15 -0.29 930 40.6	305 139 27 13 -0.31 1083 43.1	344 113 23 11 -0.35 1411 44.7	359 109 25 14 -0.39 1737 45.0	377 97 22 12 -0.35 2067 45.8	423 85 17 9 -0.32 2635 47.2
				ADEE 10					
			T	ABLE 10					
			ASPHA	LT BLEN + - 22 I					
GRADE % RECYCLE	o	15	ASPHA	LT BLEN		35	40	45	50
	0	15	А SРНА 500-	LT BLEN + - 22 I 500+	PEN	35	40	45	50
<pre>% RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft.Pt. R&B°C</pre>	0 116 537 103 56 0.00 177 29.6	160 356 65 37 -0.10 313 32.2	А SРНА 500-	LT BLEN + - 22 I 500+	PEN	236 177 34 19 -0.37 778 40.6	270 143 30 14 -0.42 790 42.5	305 114 22 14 -0.49 1416 44.7	341 96 18 13 -0.51 1795 46.4
<pre>% RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft.Pt. R&B°C</pre>	116 537 103 56 0.00 177 29.6	160 356 65 37 -0.10 313 32.2	ASPHA 500- 20 175 297 58 32 -0.20 385 33.9	LT BLEN 500+ 25 194 239 48 27 -0.32 494 36.9	218 198 40 17 -0.37 39.2	236 177 34 19 -0.37 778 40.6	270 143 30 14 -0.42 790 42.5	305 114 22 14 -0.49 1416 44.7	341 96 18 13 -0.51 1795 46.4
<pre>% RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft.Pt. R&B°C</pre>	116 537 103 56 0.00 177 29.6 0.667 57.9 167 31 69 37 -0.22 396	160 356 65 37 -0.10 313 32.2 0.743 57.0 219 203 43 23 -0.32	ASPHA 500- 20 175 297 58 32 -0.20 385 33.9 0.629 61.9 227 184 37 20 -0.39	LT BLEN 500+ 500+ 25 194 239 48 27 -0.32 494 36.9 0.719 63.2 280 151 35 17 -0.29	218 198 40 17 -0.37 667	236 177 34 19 -0.37 778 40.6	270 143 30 14 -0.42 790 42.5 0.588 69.9 346 100 25	305 114 22 14 -0.49 1416 44.7 0.581 72.8 417 83 18	341 96 18 13 -0.51 1795
<pre>% RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft.Pt. R&B°C TFOT % Loss by Wt. % Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 4°C PVN Abs Vis @ 60°C</pre>	116 537 103 56 0.00 177 29.6 0.667 57.9 167 311 69 37 -0.22 396 34.8	160 356 65 37 -0.10 313 32.2 0.743 57.0 219 203 43 23 -0.32 685 38.9	ASPHA 500- 20 175 297 588 322 -0.20 385 33.9 0.629 61.9 227 184 37 20 -0.39 782	LT BLEN 500+ 500+ 25 194 239 48 27 -0.32 494 36.9 0.719 63.2 280 151 35 17 -0.29 1050	218 198 40 17 -0.37 39.2 0.607 65.2 293 129 25 15 -0.41	236 177 34 19 -0.37 778 40.6 0.592 65.0 329 115 28 14 -0.36	270 143 30 14 -0.42 790 42.5 0.588 69.9 346 1000 14 -0.44 -0.686	305 114 22 14 -0.49 1416 44.7 0.581 72.8 417 83 18 8-0.37 6.37	341 96 18 13 -0.53 1795 46.4 0.597 68.9 460 666 168 -0.48 3363
<pre>% RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft.Pt. R&B°C TFOT % Loss by Wt. % Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Abs Vis @ 60°C Soft. Pt. R&B°C</pre>	116 537 103 56 0.00 177 29.6 0.667 57.9 167 311 69 37 -0.22 396 34.8	160 356 65 37 -0.10 313 32.2 0.743 57.0 219 203 43 23 -0.32 685 38.9	ASPHA 500- 20 175 297 588 322 -0.20 385 33.9 0.629 61.9 227 184 37 20 -0.39 782	LT BLEN 500+ 500+ 25 194 239 48 27 -0.32 494 36.9 0.719 63.2 280 151 35 17 -0.29 1050	218 198 40 17 -0.37 39.2 0.607 65.2 293 129 25 15 -0.41	236 177 34 19 -0.37 778 40.6 0.592 65.0 329 115 28 14 -0.36	270 143 30 14 -0.42 790 42.5 0.588 69.9 346 1000 14 -0.44 -0.686	305 114 22 14 -0.49 1416 44.7 0.581 72.8 417 83 18 8-0.37 6.37	341 96 18 13 -0.53 1795 46.4 0.597 68.9 460 666 168 -0.48 3363

TABLE 11

ASPHALT	BLENDING
85/100	- 37 PEN

GRADE % RECYCLE	0	15	20	85/10 25	0 30	35	40	45	50
TESTS									
Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft.Pt. R&B°C	423 88 19 10 -0.28 44.2		414 76 17 8 -0.50 48.1		424 68 15 7 -0.56 50.0		463 61 14 7 -0.55 50.8		
TFOT									
% Loss by Wt. % Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft. Pt. R&B°C	0.166 62.5 599 55 12 6 -0.30 52.2		0.223 71.1 506 54 12 4 -0.55 49.4		0.241 70.6 634 48 12 4 -0.36 52.8		0.253 72.1 630 44 14 5 -0.46 53.9		
DATA ON ABSON R	ECOVERE	D AC							
% AC (Target) % AC (Extracted)	6.0) 5.78	5.3 5.18	5.3 5.36	5.2 5.20	5.3 5.32	5.1 5.16	5.4 5.48	5.2 5.24	5.2 5.38
Kin Vis @ 135°C Pen @ 25°C PVN	482 70 -0.36	513 66 -0.32	500 63 -0.41	536 58 -0.40	547 56 -0.41	551 55 -0.41	570 53 -0.47	560 51 -0.47	575 49 -0.49

TABLE 12

ASPHALT BLENDING 120/150 - 37 PEN

GRADE % RECYCLE	0	15	20	120/1 25	50 30	35	40	45	50
TESTS									
Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft.Pt. R&B°C	325 123 31 16 -0.30 39.2		337 91 19 12 -0.59 45.8		380 82 17 9 -0.52 48.3		409 72 16 8 -0.56 48.9		
TFOT									
% Loss by Wt. % Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft. Pt. R&B°C	61.8		0.258 74.7 484 68 14 8 -0.37 48.9		0.284 75.6 517 62 16 -0.38 50.8		0.335 77.8 571 56 17 5 -0.35 53.6		
DATA ON ABSON RE	ECOVERE	D AC							
% AC (TARGET) % AC (EXTRACTED)				5.2 5.05	5.3 5.17			5.2 5.26	
Kin Vis @ 135°C Pen @ 25°C PVN	379 103 -0.27		417 82.5 -0.38	79	450 75 -0.37	68	494 67 -0.36	509 63.5 -0.37	

TABLE 13
ASPHALT BLENDING
150/200 - 37 PEN

GRADE % RECYCLE	0	15	20	150/2 25		35	40	45	50
TESTS									
Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft.Pt. R&B°C	285 156 37 18 -0.22 41.9			318 110 22 15 -0.47 43.3		371 92 20 12 -0.43 45.6		371 85 16 10 -0.52 47.8	
TFOT									
% Loss by Wt. % Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft. Pt. R&B°C	0.205 59.6 432 93 26 14 -0.19 47.8			0.395 67.3 463 74 19 5 -0.35 48.3		0.421 70.7 512 65 16 7 -0.34 50.7		0.378 68.2 536 58 15 9 -0.40 51.7	
DATA ON ABSON RE	COVERE	D AC							
% AC (TARGET) % AC (EXTRACTED)	6.0 5.84	5.3 5.07	5.3 5.21	5.2 5.07	5.3 5.20	5.1 5.16	5.4 5.40	5.2 5.22	5.2 5.38
Kin Vis @ 135°C Pen @ 25°C PVN	327 131 -0.21	340 109 -0.35	375 97 -0.35	364 94 -0.44	398 85.5 -0.41	428 78 -0.40	415 78.5 -0.44	430 73.5 -0.46	483 67.5 -0.38
			т	ABLE 14					
				LT BLEN 00 - 37					
GRADE % RECYCLE	0	15			PEN	35	40	45	50
	0	15	200/3	00 - 37 200/3	PEN 00	35	40	45	50
% RECYCLE	207 275 67 33 -0.01	15	200/3	00 - 37 200/3	PEN 00	295 120 26 14 -0.48 46.4	40	304 99 21 11 -0.65 46.7	50
% RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN	207 275 67 33 -0.01	15	200/3	200/3 25 238 156 29 17 -0.52	PEN 00	295 120 26 14 -0.48	40	304 99 21 11 -0.65	50
% RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft.Pt. R&B°C	207 275 67 33 -0.01	15	200/3	200/3 25 238 156 29 17 -0.52	PEN 00	295 120 26 14 -0.48	40	304 99 21 11 -0.65	50
* RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft.Pt. R&B°C TFOT * Loss by Wt.	207 275 67 33 -0.01 39.7 0.342 57.5 304 158 50 27 -0.09 41.7		200/3	00 - 37 200/3 25 238 156 29 17 -0.52 42.8 0.445 65.4 270 102 23 100 -0.80	PEN 00	295 120 26 14 -0.48 46.4 0.406 68.3 320 19 10 -0.78	40	304 99 21 111 -0.65 46.7 0.386 73.7 367 73 17 8	50
* RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft.Pt. R&B°C TFOT * Loss by Wt. * Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft. Pt. R&B°C	207 275 67 33 -0.01 39.7 0.342 57.5 304 158 500 27 -0.09 41.7		200/3	00 - 37 200/3 25 238 156 29 17 -0.52 42.8 0.445 65.4 270 102 23 100 -0.80	PEN 00	295 120 26 14 -0.48 46.4 0.406 68.3 320 19 10 -0.78	5.4 5.53	304 99 21 111 -0.65 46.7 0.386 73.7 367 73 17 8	5.2 5.37

TABLE 15
ASPHALT BLENDING 300/400 - 37 PEN

GRADE % RECYCLE	0	15	20	300/40 25	30	35	40	45	50
TESTS	J	13	20	23	50	•			
Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft.Pt. R&B°C	175 335 90 41 -0.01 35.0				218 180 36 18 -0.50 38.6		262 144 30 15 -0.46 41.7		287 115 24 11 -0.58 43.3
TFOT									
% Loss by Wt. % Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft. Pt. R&B°C	0.817 49.6 301 166 42 20 -0.05 40.0				0.445 66.7 312 120 26 11 -0.39 45.3		0.441 66.7 347 96 23 12 -0.49 46.1		0.396 73.0 501 84 20 12 -0.09 46.9
DATA ON ABSON RE	COVERE	D AC							
% AC (TARGET) % AC (EXTRACTED)	6.0 5.71	5.3 5.23	5.3 5.29	5.2 5.15	5.3 5.23	5.1 5.15	5.4 5.44	5.2 5.09	5.2 5.24
Kin Vis @ 135°C Pen @ 25°C PVN	206 266 -0.05	220 211 -0.26	231 194.5 -0.29	237 177.5 -0.36	261 158 -0.35	272 139.5 -0.43	285 138 -0.37	317 114 -0.43	356 97.5 -0.43
			ASPHA	ABLE 16 LT BLENI 37 P	DING				
GRADE % RECYCLE	0	15	ASPHA 500-	LT BLENI	DING PEN	35	40	45	50
	0	15	ASPHA 500	LT BLENI - 37 P 500+	DING PEN	35	40	45	50
% RECYCLE	0 116 537 103 560 0.00 29.6	15	ASPHA 500	LT BLENI - 37 P 500+	DING PEN	35	40 207 180 34 19 -0.58 38.9	45	50 237 141 28 14 -0.65 41.9
RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN	116 537 103 56 0.00	15	ASPHA 500	LT BLENI - 37 P 500+	DING DEN 30 174 236 43 23 -0.54	35	207 180 34 19	4 5	237 141 28 14 -0.65
* RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 4°C PVN Soft.Pt. R&B°C TFOT * Loss by Wt. * Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 4°C PVN Soft. Pt. R&B°C	116 537 103 56 0.00 29.6 0.667 57.9 167 311 69 37 -0.22 34.8		ASPHA 500	LT BLENI - 37 P 500+	DING DEN 30 174 236 43 23 -0.54	35	207 180 34 19	45	237 141 28 14 -0.65
* RECYCLE TESTS Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN Soft.Pt. R&B°C TFOT * Loss by Wt. Ret. Pen Kin Vis @ 135°C Pen @ 25°C @ 10°C @ 4°C PVN	116 537 103 56 0.00 29.6 0.667 57.9 167 311 69 37 -0.22 34.8		ASPHA 500	LT BLENI - 37 P 500+	174 236 43 -0.54 35.6 0.610 65.7 249 155 32 -0.45	35 5.1	207 180 34 19 -0.58 38.9 0.660 66.7 278 120 27 14	4 5	237 141 28 14 -0.65 41.9 0.498 70.9 319 1100 22 111

Kin Vis @ 135°C 136 163 164 181 183 206 214 217 266 Pen @ 25°C 455 316 291 263 242 188 164 160 124 PVN -0.03 -0.25 -0.36 -0.31 -0.41 -0.53 -0.64 -0.64 -0.61

FIGURE 1 EFFECT OF THE PROPORTION OF AGED ASPHALT CEMENT (AC)
ON THE PENETRATION OF THE MIX AC AFTER RECYCLING WITH
85/100 AC

FIGURE 2 EFFECT OF THE PROPORTION OF AGED ASPHALT CEMENT (AC) ON THE PENETRATION OF THE MIX AC AFTER RECYCLING WITH 120/150 AC

FIGURE 3 EFFECT OF THE PROPORTION OF AGED ASPHALT CEMENT (AC)
ON THE PENETRATION OF THE MIX AC AFTER RECYCLING WITH
150/200 AC

FIGURE 4 EFFECT OF THE PROPORTION OF AGED ASPHALT CEMENT (AC)
ON THE PENETRATION OF THE MIX AC AFTER RECYCLING WITH
200/300 AC

FIGURE 5 EFFECT OF THE PROPORTION OF AGED ASPHALT CEMENT (AC)
ON THE PENETRATION OF THE MIX AC AFTER RECYCLING WITH 300/400 AC

FIGURE 6 EFFECT OF THE PROPORTION OF AGED ASPHALT CEMENT (AC) ON THE PENETRATION OF THE MIX AC AFTER RECYCLING WITH 500+ AC

FIGURE 7 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (22 PEN AGED ASPHALT CEMENT AND 85/100 AC)

FIGURE 8 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (22 PEN AGED ASPHALT CEMENT AND 120/150 AC)

FIGURE 9 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (22 PEN AGED ASPHALT CEMENT AND 150/200 AC)

FIGURE 10 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (22 PEN AGED ASPHALT CEMENT AND 200/300 AC)

FIGURE 11 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (22 PEN AGED ASPHALT CEMENT AND 300/400 AC)

FIGURE 12 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (22 PEN AGED ASPHALT CEMENT AND 500+ AC)

FIGURE 13 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER
THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED
FROM RECYCLED MIXES (37 PEN AGED ASPHALT CEMENT AND
85/100 AC)

FIGURE 14 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (37 PEN AGED ASPHALT CEMENT AND 120/150 AC)

FIGURE 15 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (37 PEN AGED ASPHALT CEMENT AND 150/200 AC)

FIGURE 16 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (37 PEN AGED ASPHALT CEMENT AND 200/300 AC)

FIGURE 17 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (37 PEN AGED ASPHALT CEMENT AND 300/400 AC)

FIGURE 18 COMPARISON OF ASPHALT CEMENT BLENDS, BEFORE AND AFTER THIN FILM OVEN TEST (TFOT), WITH BINDERS EXTRACTED FROM RECYCLED MIXES (37 PEN AGED ASPHALT CEMENT AND 500+ AC)